@article{aittala2016reflectance, title={Reflectance modeling by neural texture synthesis}, author={Aittala, Miika and Aila, Timo and Lehtinen, Jaakko}, journal={ACM Transactions on Graphics (ToG)}, volume={35}, number={4}, pages={1--13}, year={2016}, publisher={ACM New York, NY, USA} }
Modeling
Surface Appearance from a Single Photograph using Self-augmented
Convolutional Neural Networks
@article{li2017modeling, title={Modeling surface appearance from a single photograph using self-augmented convolutional neural networks}, author={Li, Xiao and Dong, Yue and Peers, Pieter and Tong, Xin}, journal={ACM Transactions on Graphics (ToG)}, volume={36}, number={4}, pages={1--11}, year={2017}, publisher={ACM New York, NY, USA} }
Single-Image
SVBRDF Capture with a Rendering-Aware Deep Network
@article{deschaintre2018single, title={Single-image svbrdf capture with a rendering-aware deep network}, author={Deschaintre, Valentin and Aittala, Miika and Durand, Fredo and Drettakis, George and Bousseau, Adrien}, journal={ACM Transactions on Graphics (ToG)}, volume={37}, number={4}, pages={1--15}, year={2018}, publisher={ACM New York, NY, USA} }
Efficient
Reflectance Capture Using an Autoencoder
【TOG2018】
OpenSVBRDF的前置工作之一。
1 2 3 4 5 6 7 8 9
@article{kang2018efficient, title={Efficient reflectance capture using an autoencoder.}, author={Kang, Kaizhang and Chen, Zimin and Wang, Jiaping and Zhou, Kun and Wu, Hongzhi}, journal={ACM Trans. Graph.}, volume={37}, number={4}, pages={127--1}, year={2018} }
Single
Image Surface Appearance Modeling with Self-augmented CNNs and Inexact
Supervision
@inproceedings{ye2018single, title={Single image surface appearance modeling with self-augmented cnns and inexact supervision}, author={Ye, Wenjie and Li, Xiao and Dong, Yue and Peers, Pieter and Tong, Xin}, booktitle={Computer Graphics Forum}, volume={37}, number={7}, pages={201--211}, year={2018}, organization={Wiley Online Library} }
Materials
for Masses: SVBRDF Acquisition with a Single Mobile Phone Image
【ECCV2018】
1 2 3 4 5 6 7
@inproceedings{li2018materials, title={Materials for masses: SVBRDF acquisition with a single mobile phone image}, author={Li, Zhengqin and Sunkavalli, Kalyan and Chandraker, Manmohan}, booktitle={Proceedings of the European conference on computer vision (ECCV)}, pages={72--87}, year={2018} }
Flexible
SVBRDF Capture with a Multi-Image Deep Network
@inproceedings{deschaintre2019flexible, title={Flexible svbrdf capture with a multi-image deep network}, author={Deschaintre, Valentin and Aittala, Miika and Durand, Fr{\'e}do and Drettakis, George and Bousseau, Adrien}, booktitle={Computer graphics forum}, volume={38}, number={4}, pages={1--13}, year={2019}, organization={Wiley Online Library} }
Deep
Inverse Rendering for High-resolution SVBRDF Estimation from an
Arbitrary Number of Images
@article{gao2019deep, title={Deep inverse rendering for high-resolution SVBRDF estimation from an arbitrary number of images.}, author={Gao, Duan and Li, Xiao and Dong, Yue and Peers, Pieter and Xu, Kun and Tong, Xin}, journal={ACM Trans. Graph.}, volume={38}, number={4}, pages={134--1}, year={2019} }
MaterialGAN:
Reflectance Capture using a Generative SVBRDF Model
@article{guo2020materialgan, title={Materialgan: reflectance capture using a generative svbrdf model}, author={Guo, Yu and Smith, Cameron and Ha{\v{s}}an, Milo{\v{s}} and Sunkavalli, Kalyan and Zhao, Shuang}, journal={arXiv preprint arXiv:2010.00114}, year={2020} }
Guided
Fine-Tuning for Large-Scale Material Transferm Flash Images
【CGF2020】
1 2 3 4 5 6 7 8 9 10
@inproceedings{deschaintre2020guided, title={Guided fine-tuning for large-scale material transfer}, author={Deschaintre, Valentin and Drettakis, George and Bousseau, Adrien}, booktitle={Computer Graphics Forum}, volume={39}, number={4}, pages={91--105}, year={2020}, organization={Wiley Online Library} }
Deep SVBRDF Estimation
on Real Materials
【3DV2020】
1 2 3 4 5 6 7 8
@inproceedings{asselin2020deep, title={Deep SVBRDF estimation on real materials}, author={Asselin, Louis-Philippe and Laurendeau, Denis and Lalonde, Jean-Fran{\c{c}}ois}, booktitle={2020 International Conference on 3D Vision (3DV)}, pages={1157--1166}, year={2020}, organization={IEEE} }
Joint
SVBRDF Recovery and Synthesis From a Single Image using an Unsupervised
Generative Adversarial Network
【EGSR2020】
1 2 3 4 5 6 7
@inproceedings{zhao2020joint, title={Joint SVBRDF Recovery and Synthesis From a Single Image using an Unsupervised Generative Adversarial Network.}, author={Zhao, Yezi and Wang, Beibei and Xu, Yanning and Zeng, Zheng and Wang, Lu and Holzschuch, Nicolas}, booktitle={EGSR (DL)}, pages={53--66}, year={2020} }
SurfaceNet:
Adversarial SVBRDF Estimation from a Single Image
@inproceedings{vecchio2021surfacenet, title={Surfacenet: Adversarial svbrdf estimation from a single image}, author={Vecchio, Giuseppe and Palazzo, Simone and Spampinato, Concetto}, booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision}, pages={12840--12848}, year={2021} }
Generative
Modelling of BRDF Textures from Flash Images
【arXiv2021】
1 2 3 4 5 6
@article{henzler2021generative, title={Generative modelling of BRDF textures from flash images}, author={Henzler, Philipp and Deschaintre, Valentin and Mitra, Niloy J and Ritschel, Tobias}, journal={arXiv preprint arXiv:2102.11861}, year={2021} }
Adversarial
Single-Image SVBRDF Estimation with Hybrid Training
@article{guo2021highlight, title={Highlight-aware two-stream network for single-image SVBRDF acquisition}, author={Guo, Jie and Lai, Shuichang and Tao, Chengzhi and Cai, Yuelong and Wang, Lei and Guo, Yanwen and Yan, Ling-Qi}, journal={ACM Transactions on Graphics (TOG)}, volume={40}, number={4}, pages={1--14}, year={2021}, publisher={ACM New York, NY, USA} }
TileGen:
Tileable, Controllable Material Generation and Capture
@inproceedings{zhou2022tilegen, title={Tilegen: Tileable, controllable material generation and capture}, author={Zhou, Xilong and Hasan, Milos and Deschaintre, Valentin and Guerrero, Paul and Sunkavalli, Kalyan and Kalantari, Nima Khademi}, booktitle={SIGGRAPH Asia 2022 Conference Papers}, pages={1--9}, year={2022} }
Look-Ahead
Training with Learned Reflectance Loss for Single-Image SVBRDF
Estimation
@article{zhou2022look, title={Look-Ahead Training with Learned Reflectance Loss for Single-Image SVBRDF Estimation}, author={Zhou, Xilong and Kalantari, Nima Khademi}, journal={ACM Transactions on Graphics (TOG)}, volume={41}, number={6}, pages={1--12}, year={2022}, publisher={ACM New York, NY, USA} }
SVBRDF
Recovery From a Single Image with Highlights using a Pretrained
Generative Adversarial Network
【CGF2022】
1 2 3 4 5 6 7 8 9 10
@inproceedings{wen2022svbrdf, title={SVBRDF Recovery from a Single Image with Highlights Using a Pre-trained Generative Adversarial Network}, author={Wen, Tao and Wang, Beibei and Zhang, Lei and Guo, Jie and Holzschuch, Nicolas}, booktitle={Computer Graphics Forum}, volume={41}, number={6}, pages={110--123}, year={2022}, organization={Wiley Online Library} }
MaterIA:
Single Image High-Resolution Material Capture in the Wild
【CGF2022】
1 2 3 4 5 6 7 8 9 10
@inproceedings{martin2022materia, title={MaterIA: Single Image High-Resolution Material Capture in the Wild}, author={Martin, Rosalie and Roullier, Arthur and Rouffet, Romain and Kaiser, Adrien and Boubekeur, Tamy}, booktitle={Computer Graphics Forum}, volume={41}, number={2}, pages={163--177}, year={2022}, organization={Wiley Online Library} }
Data
Driven SVBRDF Estimation Using Deep Embedded Clustering
【Electronics2022】
1 2 3 4 5 6 7 8 9 10
@article{kim2022data, title={Data Driven SVBRDF Estimation Using Deep Embedded Clustering}, author={Kim, Yong Hwi and Lee, Kwan H}, journal={Electronics}, volume={11}, number={19}, pages={3239}, year={2022}, publisher={MDPI} }
Deep
SVBRDF Estimation from Single Image under Learned Planar Lighting
【SG2023】
1 2 3 4 5 6 7
@inproceedings{zhang2023deep, title={Deep SVBRDF Estimation from Single Image under Learned Planar Lighting}, author={Zhang, Lianghao and Gao, Fangzhou and Wang, Li and Yu, Minjing and Cheng, Jiamin and Zhang, Jiawan}, booktitle={ACM SIGGRAPH 2023 Conference Proceedings}, pages={1--11}, year={2023} }
DeepBasis:
Hand-Held Single-Image SVBRDF Capture via Two-Level Basis Material
Model
@inproceedings{wang2023deepbasis, title={DeepBasis: Hand-Held Single-Image SVBRDF Capture via Two-Level Basis Material Model}, author={Wang, Li and Zhang, Lianghao and Gao, Fangzhou and Zhang, Jiawan}, booktitle={SIGGRAPH Asia 2023 Conference Papers}, pages={1--11}, year={2023} }
MatFusion:
A Generative Diffusion Model for SVBRDF Capture
【SGA2023】
1 2 3 4 5 6 7
@inproceedings{sartor2023matfusion, title={Matfusion: a generative diffusion model for svbrdf capture}, author={Sartor, Sam and Peers, Pieter}, booktitle={SIGGRAPH Asia 2023 Conference Papers}, pages={1--10}, year={2023} }
Efficient
Reflectance Capture with a Deep Gated Mixture-of-Experts
【TVCG2023】
1 2 3 4 5 6 7
@article{ma2023efficient, title={Efficient Reflectance Capture With a Deep Gated Mixture-of-Experts}, author={Ma, Xiaohe and Yu, Yaxin and Wu, Hongzhi and Zhou, Kun}, journal={IEEE Transactions on Visualization and Computer Graphics}, year={2023}, publisher={IEEE} }
OpenSVBRDF:
A Database of Measured Spatially-Varying Reflectance
@article{ma2023opensvbrdf, title={OpenSVBRDF: A Database of Measured Spatially-Varying Reflectance}, author={Ma, Xiaohe and Xu, Xianmin and Zhang, Leyao and Zhou, Kun and Wu, Hongzhi}, journal={ACM Transactions on Graphics}, volume={42}, number={6}, year={2023}, publisher={ASSOC COMPUTING MACHINERY 1601 Broadway, 10th Floor, NEW YORK, NY USA} }
Ultra-High
Resolution SVBRDF Recovery from a Single Image
【TOG2023】
1 2 3 4 5 6 7
@article{guo2023ultra, title={Ultra-High Resolution SVBRDF Recovery from a Single Image}, author={Guo, Jie and Lai, Shuichang and Tu, Qinghao and Tao, Chengzhi and Zou, Changqing and Guo, Yanwen}, journal={ACM Transactions on Graphics}, year={2023}, publisher={ACM New York, NY} }
PhotoMat:
A Material Generator Learned from Single Flash Photos
@inproceedings{zhou2023photomat, title={Photomat: A material generator learned from single flash photos}, author={Zhou, Xilong and Hasan, Milos and Deschaintre, Valentin and Guerrero, Paul and Hold-Geoffroy, Yannick and Sunkavalli, Kalyan and Kalantari, Nima Khademi}, booktitle={ACM SIGGRAPH 2023 Conference Proceedings}, pages={1--11}, year={2023} }
BRDF
AI压缩BRDF测量数据,基于AI的BRDF模型。
Unified Neural Encoding of
BTFs
【CGF2020】
1 2 3 4 5 6 7 8 9 10
@inproceedings{rainer2020unified, title={Unified neural encoding of BTFs}, author={Rainer, Gilles and Ghosh, Abhijeet and Jakob, Wenzel and Weyrich, Tim}, booktitle={Computer Graphics Forum}, volume={39}, number={2}, pages={167--178}, year={2020}, organization={Wiley Online Library} }
Neural BTF Compression
and Interpolation
【CGF2020】
1 2 3 4 5 6 7 8 9 10
@inproceedings{rainer2019neural, title={Neural BTF compression and interpolation}, author={Rainer, Gilles and Jakob, Wenzel and Ghosh, Abhijeet and Weyrich, Tim}, booktitle={Computer Graphics Forum}, volume={38}, number={2}, pages={235--244}, year={2019}, organization={Wiley Online Library} }
DeepBRDF:
A Deep Representation for Manipulating Measured BRDF
【CGF2020】
1 2 3 4 5 6 7 8 9 10
@inproceedings{hu2020deepbrdf, title={DeepBRDF: A deep representation for manipulating measured BRDF}, author={Hu, Bingyang and Guo, Jie and Chen, Yanjun and Li, Mengtian and Guo, Yanwen}, booktitle={Computer Graphics Forum}, volume={39}, number={2}, pages={157--166}, year={2020}, organization={Wiley Online Library} }
Neural BRDF
Representation and Importance Sampling
@article{zheng2021compact, title={A compact representation of measured brdfs using neural processes}, author={Zheng, Chuankun and Zheng, Ruzhang and Wang, Rui and Zhao, Shuang and Bao, Hujun}, journal={ACM Transactions on Graphics (TOG)}, volume={41}, number={2}, pages={1--15}, year={2021}, publisher={ACM New York, NY} }
Neural Layered BRDFs
【SA2022】
1 2 3 4 5 6 7
@inproceedings{fan2022neural, title={Neural Layered BRDFs}, author={Fan, Jiahui and Wang, Beibei and Hasan, Milos and Yang, Jian and Yan, Ling-Qi}, booktitle={ACM SIGGRAPH 2022 Conference Proceedings}, pages={1--8}, year={2022} }
A Sparse Non-parametric BRDF
Model
【TOG2022】
1 2 3 4 5 6 7 8 9 10
@article{tongbuasirilai2022sparse, title={A Sparse Non-parametric BRDF Model}, author={Tongbuasirilai, Tanaboon and Unger, Jonas and Guillemot, Christine and Miandji, Ehsan}, journal={ACM Transactions on Graphics}, volume={41}, number={5}, pages={1--18}, year={2022}, publisher={ACM New York, NY} }
Material & Shape
同时估计材质和形状。
Learning
to Reconstruct Shape and Spatially-Varying Reflectance from a Single
Image
【TOG2018】
1 2 3 4 5 6 7 8 9 10
@article{li2018learning, title={Learning to reconstruct shape and spatially-varying reflectance from a single image}, author={Li, Zhengqin and Xu, Zexiang and Ramamoorthi, Ravi and Sunkavalli, Kalyan and Chandraker, Manmohan}, journal={ACM Transactions on Graphics (TOG)}, volume={37}, number={6}, pages={1--11}, year={2018}, publisher={ACM New York, NY, USA} }
Learning
Efficient Illumination Multiplexing for Joint Capture of Reflectance and
Shape
【TOG2019】
1 2 3 4 5 6 7 8 9
@article{kang2019learning, title={Learning efficient illumination multiplexing for joint capture of reflectance and shape.}, author={Kang, Kaizhang and Xie, Cihui and He, Chengan and Yi, Mingqi and Gu, Minyi and Chen, Zimin and Zhou, Kun and Wu, Hongzhi}, journal={ACM Trans. Graph.}, volume={38}, number={6}, pages={165--1}, year={2019} }
Two-shot
Spatially-varying BRDF and Shape Estimation
@inproceedings{boss2020two, title={Two-shot spatially-varying brdf and shape estimation}, author={Boss, Mark and Jampani, Varun and Kim, Kihwan and Lensch, Hendrik and Kautz, Jan}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={3982--3991}, year={2020} }
Inverse
Rendering for Complex Indoor Scenes: Shape, Spatially-Varying Lighting
and SVBRDF from a Single Image
【CVPR2020】
1 2 3 4 5 6 7
@inproceedings{li2020inverse, title={Inverse rendering for complex indoor scenes: Shape, spatially-varying lighting and svbrdf from a single image}, author={Li, Zhengqin and Shafiei, Mohammad and Ramamoorthi, Ravi and Sunkavalli, Kalyan and Chandraker, Manmohan}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={2475--2484}, year={2020} }
A
Unified Spatial-Angular Structured Light for Single-View Acquisition of
Shape and Reflectance
【CVPR2023】
1 2 3 4 5 6 7
@inproceedings{xu2023unified, title={A unified spatial-angular structured light for single-view acquisition of shape and reflectance}, author={Xu, Xianmin and Lin, Yuxin and Zhou, Haoyang and Zeng, Chong and Yu, Yaxin and Zhou, Kun and Wu, Hongzhi}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={206--215}, year={2023} }
@inproceedings{jin2022woven, title={Woven fabric capture from a single photo}, author={Jin, Wenhua and Wang, Beibei and Hasan, Milos and Guo, Yu and Marschner, Steve and Yan, Ling-Qi}, booktitle={SIGGRAPH Asia 2022 Conference Papers}, pages={1--8}, year={2022} }
@inproceedings{zhou2023semi, title={A Semi-Procedural Convolutional Material Prior}, author={Zhou, Xilong and Ha{\v{s}}an, Milo{\v{s}} and Deschaintre, Valentin and Guerrero, Paul and Sunkavalli, Kalyan and Kalantari, Nima Khademi}, booktitle={Computer Graphics Forum}, year={2023}, organization={Wiley Online Library} }